The unrestricted latent class model

Manifest (observed) variables A, B, C, and D having respectively I, J, K, and L classes. Prob that an individual (ind) is at level i, j, k, l is $\pi_{i j k l}$.

$$
\begin{equation*}
\pi_{i j k l}=\sum_{t=1}^{T} \pi_{i j k l t}^{A B C D X} \tag{1}
\end{equation*}
$$

In words, inds can be divided into non-overlapping, mutually exclusive latent classes.

$$
\begin{equation*}
\pi_{i j k l t}^{A B C D X}=\pi_{t}^{X} \pi_{i t}^{\bar{A} X} \pi_{j t}^{\bar{B} X} \pi_{k t}^{\bar{C} X} \pi_{l t}^{\bar{D} X} \tag{2}
\end{equation*}
$$

In words, the manifest (observed) vars are independent given the latent class. Note that $\pi_{i t}^{\bar{A} X}$ is prob that an ind is level i with respect to (wrt) var A given that she is at t wrt X (i.e. wrt her latent class).

The following conditions are required:

$$
\begin{gather*}
\sum_{t=1}^{T} \pi_{t}^{X}=1, \sum_{i=1}^{I} \pi_{i t}^{\bar{A} X}=1, \sum_{j=1}^{J} \pi_{j t}^{\bar{B} X}=1, \sum_{k=1}^{K} \pi_{k t}^{\bar{C} X}=1, \sum_{l=1}^{L} \pi_{l t}^{\bar{D} X}=1 \tag{3}\\
\pi_{t}^{X}=\sum_{i, j, k, l} \pi_{i j k l t}^{A B C D X}, \text { and } \tag{4}\\
\pi_{t}^{X} \pi_{i t}^{\bar{A} X}=\sum_{j, k, l} \pi_{i j k l t}^{A B C D X} \tag{5}
\end{gather*}
$$

And eq'ns for B, C, and D corresponding to (5).

I find this counter intuitive, but for the prob that an ind is in latent class t given that she is at (i, j, k, l), Goodman uses $\pi_{i j k l t}^{A B C D} \bar{X}$:

$$
\begin{equation*}
\pi_{i j k l t}^{A B C D \bar{X}}=\pi_{i j k l t}^{A B C D X} / \pi_{i j k l}^{A B C D} \tag{6}
\end{equation*}
$$

The last eq'ns that Goodman needs prior to describing the algorithm just rewrite (4) and (5) using (6):

$$
\begin{array}{r}
\pi_{t}^{X}=\sum_{i, j, k, l} \pi_{i j k l}^{A B C D} \pi_{i j k l t}^{A B C D \bar{X}} \\
\pi_{i t}^{\bar{A} X}=\left(\sum_{j, k, l} \pi_{i j k l} \pi_{i j k l t}^{A B C D \bar{X}}\right) / \pi_{t}^{X} \tag{8}
\end{array}
$$

Now we give the eq'ns governing the convergence algorithm. These are given in 2 sets of eq'ns, those in the 2 nd set depending on those from the first. Let $p_{i j k l}$ be the proportion of obs seen to fall into cell i, j, k, l. Then, the first set is:

$$
\begin{array}{r}
\hat{\pi}_{i j k l}=\sum_{t=1}^{T} \hat{\pi}_{i j k l t}^{A B C D X} \\
\hat{\pi}_{i j k l t}^{A B C D X}=\hat{\pi}_{t}^{X} \hat{\pi}_{i t}^{\bar{A} X} \hat{\pi}_{j t}^{\bar{B} X} \hat{\pi}_{k t}^{\bar{C} X} \hat{\pi}_{l t}^{\bar{D} X} \\
\hat{\pi}_{i j k l t}^{A B C D \bar{X}}=\hat{\pi}_{i j k l t}^{A B C D X} / \hat{\pi}_{i j k l} \tag{11}
\end{array}
$$

The second set of eq'ns is:

$$
\begin{gather*}
\hat{\pi}_{t}^{X}=\sum_{i, j, k, l} p_{i j k l} \hat{\pi}_{i j k l t}^{A B C D \bar{X}} \tag{12}\\
\hat{\pi}_{i t}^{\bar{A} X}=\left(\sum_{j, k, l} p_{i j k l} \hat{\pi}_{i j k l t}^{A B C D \bar{X}}\right) / \hat{\pi}_{t}^{X} \tag{13a}
\end{gather*}
$$

$$
\begin{align*}
& \hat{\pi}_{j t}^{\bar{B} X}=\left(\sum_{i, k, l} p_{i j k l} \hat{\pi}_{i j k l t}^{A B C D \bar{X}}\right) / \hat{\pi}_{t}^{X} \tag{13b}\\
& \hat{\pi}_{k t}^{\bar{C} X}=\left(\sum_{i, j, l} p_{i j k l} \hat{\pi}_{i j k l t}^{A B C D \bar{X}}\right) / \hat{\pi}_{t}^{X} \tag{13c}\\
& \hat{\pi}_{l t}^{\bar{D} X}=\left(\sum_{i, j, k} p_{i j k l} \hat{\pi}_{i j k l t}^{A B C D \bar{X}}\right) / \hat{\pi}_{t}^{X} \tag{13d}
\end{align*}
$$

Now we give the algorithm:
Start with a reasonable (well, all entries on the open interval (0,1) for starters) vector $\pi(0)=\left\{\pi_{t}^{X}(0), \pi_{t}^{\bar{A} X}(0), \quad \pi_{t}^{\bar{B} X}(0), \quad \pi_{t}^{\bar{C} X}(0), \quad \pi_{t}^{\bar{D} X}(0)\right\}$ and use these and successively generated values to solve the left hand sides (lhs) of eq'ns (10), (9), and (11). Then use these new values along with the observed $p_{i j k l}$ to solve first eq'n (12) then (13a)-(13d). Next, use the values obtained from (12) and (13) to form $\pi(1)$ and so on until convergence.

That's pretty much it.
Note a couple of things:

- These methods are apparently full of cases where many local optima are found. Compute the likelihood ration chi-square for each set of values to find which set of values minimize it.
- A word of caution: One should probably read Goodman's prescribed methods of determining if the model is identifiable before one spends a great deal of time trying to determine which of a set of solutions is optimal.

